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Abstract 1 

2 

As integration of solar power into the national electric grid rapidly increases, it becomes 3 

imperative to improve forecasting of this highly variable renewable resource. Thus, a team of 4 

researchers from public, private, and academic sectors partnered to develop and assess a new 5 

solar power forecasting system, Sun4Cast®. The partnership focused on improving decision-6 

making for utilities and independent system operators, ultimately resulting in improved grid 7 

stability and cost savings for consumers. The project followed a value chain approach to 8 

determine key research and technology needs to reach desired results. 9 

10 

Sun4Cast integrates various forecasting technologies across a spectrum of temporal and spatial 11 

scales to predict surface solar irradiance. Anchoring the system is WRF-Solar®, a version of the 12 

Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model 13 

optimized for solar irradiance prediction. Forecasts from multiple NWP models are blended via 14 

the Dynamic Integrated Forecast (DICast®) System, the basis of the system beyond about 6 h. 15 

For short-range (0-6 h) forecasts, Sun4Cast leverages several observation-based nowcasting 16 

technologies. These technologies are blended via the Nowcasting Expert System Integrator 17 

(NESI). The NESI and DICast systems are subsequently blended to produce short to mid-term 18 

irradiance forecasts for solar array locations. The irradiance forecasts are translated into power 19 

with uncertainties quantified using an analog ensemble approach, and are provided to the 20 

industry partners for real-time decision-making. The Sun4Cast system ran operationally 21 

throughout 2015 and results were assessed.  22 

23 

This paper analyzes the collaborative design process, discusses the project results, and provides 24 

recommendations for best-practice solar forecasting. 25 

26 

27 
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Capsule:  28 

 29 

The Sun4Cast System results from a research-to-operations project built on a value chain 30 

approach, and benefiting electric utilities’ customers, society, and the environment by improving 31 

state-of-the-science solar power forecasting capabilities.  32 



 4 

Introduction 33 

 34 

This paper reports on the results of a public-private-academic collaboration to improve the state-35 

of-the-science of solar power forecasting. Led by the National Center for Atmospheric Research 36 

(NCAR), the project applied a value chain approach to leverage the vision of the team members 37 

and progress towards the end goal of improving the economics of deploying solar energy (Haupt 38 

et al. 2016). This paper analyzes the collaborative design process, discusses the project results, 39 

and provides recommendations for “best-practice” solar forecasting. 40 

 41 

Background  42 
 43 

The use of solar power is increasing exponentially. In the U.S., solar power has grown from 1.2 44 

GW (0.1% of the electricity supply) in 2011 to more than 30 GW in 2016, largely due to the 45 

rapid decreases in the levelized cost of solar electricity production (LCOE1; Woodhouse et al. 46 

2016). It is expected to continue to grow at similar rates for the foreseeable future. On a global 47 

basis, the International Energy Agency states that “Renewable energy will represent the largest 48 

single source of electricity growth over the next five years, driven by falling costs and aggressive 49 

expansion in emerging economies … renewables hold [great promise] for affordably mitigating 50 

climate change and enhancing energy security.”2  51 

 52 

Harvesting solar power relies on transforming the sun’s energy in the form of irradiance into 53 

usable power. However, some of this energy is attenuated by atmospheric aerosols and clouds on 54 

its way to the earth’s surface, decreasing the available irradiance depending on the atmospheric 55 

conditions. The variability of the available solar power becomes an important consideration for 56 

utilities as they maintain grid stability and plan for the following day’s unit allocations. 57 

 58 

Thus, as integration of solar power into the national electric grid rapidly increases, it becomes 59 

increasingly imperative to overcome the traditional forecasting challenges of this highly variable 60 

                                                           
1 LCOE accounts for the total lifecycle cost of energy from project inception through decommissioning, including 
electricity generation. 
2  https://www.iea.org/newsroom/news/2015/october/renewables-to-lead-world-power-market-growth-to-2020.html, 

accessed 8 Dec 2016. 

https://www.iea.org/newsroom/news/2015/october/renewables-to-lead-world-power-market-growth-to-2020.html
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renewable resource. Solar power prediction is accomplished by different techniques for various 61 

time scales. Solar energy is particularly variable over space and time because of the myriad 62 

complexities caused by the dynamic evolution of clouds.  63 

 64 

Variability of Solar Power 65 

 66 

The variability of power output is greater with high penetrations of solar on the grid than with 67 

high penetrations of wind (Lew et al. 2012), illustrating a key challenge of solar power 68 

integration. A utility company’s operating reserve requirements, which provide for rapid changes 69 

in matching system electric load, are determined by the response speed (ramp rate and start-up 70 

time), response duration, frequency of use (continuously or only during rare events), direction of 71 

change (up or down), and type of control mechanism (Ela et al. 2013). Traditionally, utilities 72 

have had to increase the amount of operating reserves to account for the variability of renewable 73 

energy. More recently, however, these operating reserves are being appropriately managed with 74 

accurate solar forecasts, as energy costs can be strategically minimized with knowledge of the 75 

short- and long-term variations in solar irradiance (Curtright and Apt 2008).  76 

 77 

The quantification of temporal solar irradiance variability caused by the dynamic evolution of 78 

clouds has been extensively studied. Hinkelman et al. (2013, 2014) determined that cloud optical 79 

depth and cloud height are the best predictors of irradiance variability at one-minute time 80 

resolution. Gueymard and Wilcox (2011) analyzed the regional dependence of solar power and 81 

showed that greater variability tends to occur in coastal and mountainous areas, such as the 82 

California coast, due to topography-induced micro-climates.  83 

 84 

The difficulties in predicting cloud cover at specific locations and times are well known, and a 85 

number of groups around the world are actively engaged in solar power forecasting research. 86 

Real-time solar power forecasting is reviewed in recent publications, including Kleissl (2013), 87 

Troccoli et al. (2014), Dubus (2014), and Tuohy et al. (2015). Lorenz et al. (2014) reviews the 88 

extensive work of the team at the University of Oldenburg in Germany. The Australian initiative 89 

is ongoing (Davy and Troccoli 2012). Schroedter-Homscheidt et al. (2013) point out the need for 90 
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improved aerosol prediction for solar power prediction and discuss techniques leveraging 91 

ECMWF chemistry forecasts. 92 

 93 

The Sun4Cast Project 94 

 95 

This project was selected for funding by the DOE’s SunShot Initiative as a “Public-Private-96 

Academic Partnership to Advance Solar Power Forecasting”. The goals of this project were to: 97 

 Build a solar power forecasting system to advance the state-of-the-science through 98 

cutting-edge research; 99 

 Test the system with appropriate metrics for several geographically diverse, high-100 

penetration solar utilities and independent system operators (ISOs); and  101 

 Disseminate the research results widely to raise the bar on solar power forecasting 102 

technology. 103 

 104 

Project Progression 105 

 106 

Beginning with the End in Mind 107 

  108 

The first step of any project is assembling the right team to accomplish the goals, including 109 

identifying and engaging the stakeholders. Here, the end users are the electric utilities and system 110 

operators who make the decisions on unit allocation, energy trading, and real-time integration 111 

into the grid. Several utilities and ISOs were part of the process from the beginning and some 112 

others participated during portions of the project. It was important for the researchers to listen to 113 

their needs in planning the details of the system, how to bring it together, how to convey the 114 

output, and how to properly assess it to best help these end users. A second set of stakeholders is 115 

the commercial forecast providers who regularly communicate and transfer forecast results to the 116 

end users. 117 

 118 
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The scientists who performed the research and the software engineers who configured and built 119 

the system came from national laboratories and universities that perform use-inspired research. 120 

The NCAR-led team was already immersed in solar forecasting research at the time of the award.  121 

 122 

The first-year project workshop at NCAR was an opportunity to convene the entire team to think 123 

through how to integrate all of the research into a working Sun4Cast system. The workshop 124 

emphasized meeting the needs of the users. After an initial introduction to the project goals, the 125 

workshop commenced with a user panel of utility and ISO representatives to explain how they 126 

use forecasts and what they need in the forecast, as well as when it must be delivered to be most 127 

useful. We saw this session as “beginning with the end in mind” as a way to envision the project 128 

outcome. This began the process of conceptual modeling (see sidebar), which brought out ideas 129 

from the various stakeholders, and that the management team then synthesized into a working 130 

value chain (Figure 1) that could guide the rest of the project. This approach, derived from social 131 

science, is rather novel for configuring and running scientific projects, but proved to be quite 132 

effective for this large integrated project. 133 

 134 

Metrics from the Start 135 

Another unique feature of this project is the development of metrics across SunShot teams 136 

through listening to stakeholder needs. Development of metrics was accomplished jointly with a 137 

collaborative team that included DOE SunShot Initiative leadership, the IBM Watt-Sun 138 

forecasting team (Utsler 2014), and NOAA team members, in addition to the Sun4Cast team. 139 

That group held several workshops that engaged end users. With that input and many team 140 

teleconferences, the group designed a table of proposed metrics (Table 1) for evaluating the 141 

system (Zhang et al. 2014; Jensen et al. 2016). In parallel, the NCAR Metrics team worked with 142 

our utility stakeholders and discussed methods to assess value provided by improved forecasting. 143 

 144 

The Sun4Cast System 145 

The Sun4Cast® system (Figure 2) has two main forecast tracks: a Nowcast track that forecasts at 146 

high temporal resolution extending to 6 h, the results of which are blended via the Nowcasting 147 



 8 

Expert System Integrator (NESI), and the Dynamic Integrated ForeCast (DICast®; Mahoney et 148 

al. 2012; Myers et al. 2011) track that forecasts at coarser temporal resolution out to several days 149 

based on numerical weather prediction (NWP). Both NESI and DICast apply a consensus 150 

forecasting approach, meaning that they blend and optimize multiple models to provide a better 151 

forecast than any of the models would produce alone. That is, they consider multiple input 152 

forecasts and weight those forecasts according to the recent observed skill of each input. 153 

While this consensus forecasting approach has been applied to forecasting more common 154 

weather variables (e.g., air temperature), it had not previously been applied to solar irradiance 155 

forecasting in any significant way. Only recently have public forecast systems begun to use a 156 

consensus forecast approach, such as in the NOAA National Blend of Models (Gilbert et al. 157 

2016). In the private sector, some companies employ a consensus approach, while others rely on 158 

a single-source model; much of this is proprietary. 159 

Forecasts from Sun4Cast are provided every 15 min, extend to 72 h, and can be provided as far 160 

out as 168 h. 161 

WRF-Solar – Improving NWP for Irradiance Forecasting 162 

Most modern weather forecasting systems rely on NWP models for their base forecasts. Thus, a 163 

major emphasis of this project was to improve NWP by developing, testing, evaluating, and 164 

improving WRF-Solar®, the first NWP model specifically designed to meet the increasing 165 

demand for specialized forecast products for solar energy applications (Jiménez et al. 2016a,b). 166 

WRF-Solar is used in both the NESI and DICast systems.  167 

 168 

An intercomparison of different global, multiscale, and mesoscale models’ skill in forecasting 169 

solar irradiance performed by Perez et al. (2013) indicated that the ECMWF global model 170 

significantly outperforms the GFS-driven WRF model over a wide range of sites. So far, this has 171 

been interpreted as partially due to shortcomings in cloud modeling and data assimilation. It is 172 

also possible that the radiative transfer algorithms in the U.S. forecast models do not perform as 173 

well for this application. This hypothesis was confirmed by Ruiz-Arias et al. (2013) in the case 174 

of the WRF model (Skamarock et al. 2008). That study highlighted biases in one frequently used 175 

radiation algorithm in WRF, and the need for improvement by adding aerosol data. In addition, 176 
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cloud formation and dissipation needed to be improved. Thus, the project team made a variety of 177 

augmentations to the WRF model to tailor it for solar power forecasting. Figure 3 depicts these 178 

WRF-Solar upgrades. 179 

The first augmentation focused on improving the solar tracking algorithm to account for 180 

deviations associated with the eccentricity of the Earth’s orbit and obliquity. Because solar 181 

energy applications require more frequent calls to the radiation package, inaccuracies in the solar 182 

position caused a non-negligible error. 183 

Second, WRF-Solar added the direct normal irradiance (DNI) and diffuse (DIF) components 184 

from the radiation parameterization to the model output in addition to global horizontal 185 

irradiance (GHI), parameterizing them when needed (Ruiz-Arias et al. 2010). 186 

Third, efficient parameterizations were implemented to either interpolate the irradiance in 187 

between calls to the radiative transfer parameterization, or to use a fast radiative transfer code 188 

that avoids computing three-dimensional heating rates but provides the surface irradiance (Xie et 189 

al. 2016). 190 

Fourth, a new parameterization was developed to improve the representation of absorption and 191 

scattering of radiation by aerosols (aerosol direct effect), including allowing high spatio-temporal 192 

variability of aerosols. The treatment of aerosols (Ruiz-Arias et al. 2014) allows for the ingestion 193 

of aerosol optical properties with time stamps to accurately model the temporal variations in 194 

aerosol loading, permitting the ingested aerosol concentration to represent the aerosol optical 195 

properties in WRF-Solar. Jimenez et al. (2016a) examined the use of several different aerosol 196 

data and found improvement with dynamic input. 197 

A fifth advance was to specify interactions of the aerosols with the cloud microphysics, altering 198 

the cloud evolution and radiative properties (aerosol indirect effects). Traditionally, these effects 199 

have only been implemented in atmospheric chemistry models, which are significantly more 200 

computationally expensive than NWP models without detailed chemistry. WRF-Solar uses a 201 

simplified treatment of the aerosols (i.e., only two general aerosol species are allowed, 202 

specifically the nonhygroscopic ice-nucleating aerosols which are dust particles and the 203 

hygroscopic aerosols including sea salts, organic matter, and sulfates) that accounts for changes 204 
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in the size of cloud hydrometeors to represent these aerosol indirect effects (Thompson and 205 

Eidhammer 2014) with moderate increase in computational cost (~16%). The aerosols are 206 

advected by the model dynamics and the parameterization is linked to the WRF-Solar aerosol 207 

parameterization to provide a fully coupled representation of the cloud-aerosol-radiation system. 208 

A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave 209 

irradiance as implemented in a shallow cumulus parameterization (Deng et al. 2003, 2014). The 210 

scheme includes predictive equations for the sub-grid-scale cloud water/ice content and the cloud 211 

fraction.  212 

Finally, as described below, WRF-Solar was coupled with elements of a forefront satellite data 213 

assimilation model, which allows assimilation of infrared irradiances from satellites, resulting in 214 

an improved initialization of the cloud field that further increases the performance of short-range 215 

forecasts.  216 

Penn State University and the National Renewable Energy Laboratory (NREL) collaborated with 217 

NCAR in making these enhancements. NCAR responded to numerous requests to use beta 218 

versions of WRF-Solar. The community sees it as a way to advance deployment of solar energy 219 

by enabling better forecasting of the irradiance resource. NCAR expects to further exercise and 220 

improve WRF-Solar in future projects. 221 

Nowcasting Systems 222 

The shortest ranges of forecasts must leverage measurements that are available in real time, those 223 

from both ground-based sensors as well as satellite-mounted sensors. The shortest range 224 

irradiance forecast (0 – 6 h) is supplied by the NESI system. The NESI system consists of several 225 

short-range forecasting systems: the Total Sky Imager Nowcast (TSICast; Peng et al. 2015), 226 

StatCast (McCandless et al. 2015, 2016a,b), the Cooperative Institute for Research in the 227 

Atmosphere (CIRA) nowCast (CIRACast; Miller et al. 2012; Rogers et al. 2015), the 228 

Multisensor Advection-Diffusion nowCast (MADCast; Auligné 2014a,b; Descombes et al. 229 

2014), WRF-Solar-Now, and MAD-WRF. 230 

TSICast is a ground-based cloud imaging and tracking system that operates on the shortest time 231 

scale, with a latency of only a few minutes and forecasts that currently extend to approximately 232 
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15 min. This project facilitated research to develop and test model algorithms and improve the 233 

hardware and software so that new high definition cameras deployed at multiple nearby locations 234 

facilitate discernment of clouds at varying levels and advection according to the winds observed 235 

at those levels (Peng et al. 2015). 236 

Pyranometers supply the in situ data for initializing StatCast. During the course of this project, 237 

short-range statistical forecasting was advanced by emphasizing regime-dependent forecasting, 238 

both implicitly through a regression tree approach, and more explicitly by combining clustering 239 

techniques with artificial neural networks. These methods make a substantial improvement in 240 

MAE (from 15-50%) over short-range smart persistence forecasts (McCandless et al. 2015, 241 

2016a,b). While multiple versions of StatCast were developed, in this article we focus on 242 

StatCast-Cubist (McCandless et al. 2015), which uses a hierarchical regression tree (the Cubist 243 

model; Quinlan 1992; Kuhn et al. 2012). 244 

A second category of systems employs satellite imagery and uses that information to discern 245 

clouds and their motion, allowing the systems to project the clouds, and the resulting irradiance 246 

attenuation, in time. During this project, NOAA reduced satellite data latency while allowing the 247 

recovery of higher resolution data. The CIRA team advanced cloud shadowing, parallax 248 

removal, and implementation of better advecting winds at different altitudes (Rogers et al. 2015). 249 

A second satellite-based system, MADCast, assimilates data from multiple satellite imagers and 250 

profilers to incorporate a cloud fraction for each grid column into the dynamic core of WRF 251 

(Auligné 2014a,b; Descombes et al. 2014). That model allows advection of the clouds directly 252 

via the WRF dynamics. 253 

One issue with the satellite data assimilation methods described above is that they do not allow 254 

for cloud formation and dissipation, which is in the domain of NWP models. Thus, WRF-Solar 255 

(Jiménez et al. 2016a,b) was adapted for nowcasting, being run at lower resolution more 256 

frequently to fill the gap of time (between 1 and 6 hours) where changes in the clouds are most 257 

likely (WRF-Solar-Now). Finally, as the project progressed, it became obvious that combining 258 

the advantages of WRF-Solar-Now with MADCast, which assimilates the current cloud 259 

observations and allows for cloud formation and dissipation via WRF-Solar-Now. Thus was born 260 

MAD-WRF (Haupt et al. 2016).  261 
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The Nowcasting system evaluation (Haupt et al. 2016) revealed that each component has a 262 

“sweet spot” where it is most effective. For instance, the satellite-based method, CIRACast, 263 

provides the best initial state during partly cloudy conditions, although that may not carry 264 

through to clear or fully cloudy conditions. It does, however, provide value for forecasting short-265 

range ramps due to changing cloud cover (Figure 5-8 of Haupt et al. 2016). Thus the blending of 266 

the different nowcasting components produces an effective method of nowcasting. 267 

System Engineering - Integration 268 

Building the individual component models is necessary, but not sufficient, to supplying a high-269 

quality solar power forecast. It is also critical to engineer a system that smoothly handles data 270 

input and output and effectively blends the results of each of the components. This engineered 271 

system must allow for missing observations or model results as well as allowing for “graceful 272 

degradation” when not all systems are performing optimally. Haupt and Kosović (2016) discuss 273 

the “big data” aspects of this system and how it brings observational data together with model 274 

data to produce a complete system. 275 

NESI uses recent performance information to smartly blend the Nowcast components by 276 

weighting the model contributions according to their historical performance at each lead time. 277 

Although this is currently accomplished using historical statistics, moving to a dynamically 278 

blended system in the future could prove advantageous. 279 

The DICast system blends the output of NWP models, both WRF-Solar output as well as that 280 

from publicly available models, including NOAA’s High Resolution Rapid Refresh (HRRR), 281 

North American Model (NAM), Global Forecast System (GFS), and the Canadian Global 282 

Environmental Multiscale Model (GEM) for this project. This blending is accomplished by first 283 

correcting biases in the individual models, then by dynamically optimizing their weights for each 284 

lead time. Although DICast has shown a high degree of accuracy for other forecast variables 285 

(Myers et al. 2011), this project was the first time that it was employed for irradiance forecasts. 286 

Development during the project included building algorithms to account for disparate model time 287 

frames and consideration of solar angle in blending the model output correctly. The DICast and 288 

Nowcast systems must in turn be blended during the overlap periods. 289 
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At this point, the blended system forecasts irradiance; thus, it is then necessary to convert 290 

irradiance to power. This was accomplished by using a Cubist regression tree model (Kuhn et al. 291 

2012) that was trained on historical irradiance and power observations. The advantage of this 292 

empirical approach to power conversion is that it can use GHI, DNI, or plane-of-array (POA) 293 

irradiance as long as these are used consistently. Furthermore, it can implicitly account for the 294 

specifics of solar panel installation (tilt angle, etc.) by training the power output directly to the 295 

observed input solar irradiance. This process inherently mitigates problems by not directly using 296 

any metadata, which is often inaccurate. 297 

The last step in the forecast process applies the analog ensemble technique (AnEn; Delle 298 

Monache et al. 2011, 2013; Alessandrini et al. 2015, Haupt et al. 2016). The AnEn searches the 299 

database for past forecasts most similar to the current forecast. It then forms a probability density 300 

function (pdf) of the observations that correspond to those historical forecasts. The mean of this 301 

pdf becomes the improved forecast and its spread quantifies the uncertainty. Thus, the AnEn 302 

both corrects the power forecast and provides probabilistic information to quantify the 303 

uncertainty of the forecast. Again, this project was a first opportunity to exercise AnEn for solar 304 

power and it effectively quantified the uncertainty in the solar power forecasts with significantly 305 

lower computational cost than standard multi- simulation model ensembles. 306 

Testing and Evaluating the System 307 

Quasi-Operationalization 308 

The system was deployed in concert with the team partners as forecast systems came online. The 309 

full system was run in quasi-operational mode from January 2015 through March 2016. The 310 

partners in the project are located in a geographically diverse set of locations across the country – 311 

the eastern U.S. [Brookhaven National Laboratory (BNL)], central U.S. (Xcel Energy), and 312 

western U.S. [Sacramento Municipal Utility District (SMUD) and Southern California Edison 313 

(SCE)] – thus bolstering the robustness of the results.  314 

Assessment 315 

The verification system is based on NCAR’s Model Evaluation Tools (MET; 316 

http://www.dtcenter.org/met/users/) package, specifically the Stat-Analysis tool to compute 317 

http://www.dtcenter.org/met/users/
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verification measures of irradiance and power and the METViewer database and display system 318 

to aggregate the results. Several baselines are available for this evaluation, including persistence 319 

with knowledge of sky condition and solar zenith angle (labeled “Smart Persistence”) for 320 

Nowcast components and publicly available NWP models for both the Nowcast and DICast 321 

components. Here we show a small sample of the results reported elsewhere (Haupt et al. 2016). 322 

  Day-Ahead Assessment  323 

DICast statistically blends NWP forecasts for the Sun4Cast system, providing the forecast 324 

beyond 6 h (although it also produces forecasts from time t=0). Figure 4 indicates that when 325 

scores are aggregated over all partners’ locations, including BNL, Xcel, SMUD, and SCE, the 326 

blended Sun4Cast and WRF-Solar systems perform better than the operational models for day-327 

ahead forecasts. Statistical analysis through pairwise differences and bootstrapped confidence 328 

intervals indicates that these results are statistically significant at the 95% level for all issue times 329 

when NAM is compared to DICast, and all but the first issue time when NAM is compared to 330 

WRF-Solar. Figure 5-13 in Haupt et al. (2016) also indicates statistically significant results at all 331 

lead times.  332 

Nowcast Assessment 333 

One purpose of exploring multiple nowcast components is that each one is potentially skillful for 334 

a different forecast horizon (lead time) and sky condition. Figure 5 provides a measure of each 335 

model’s skill when these scores are accumulated over the geographic regions for the entire 15-336 

month evaluation period. The scores were aggregated over the hourly initialization times. It also 337 

shows the skill for clear, partly cloudy, and cloudy conditions. During clear conditions, only 338 

WRF-Solar-Now and the blended nowcast NESI outperform Smart Persistence to 45 minutes 339 

(0.75 hours). After this, all methods have lower MAE than Smart Persistence, with WRF-Solar-340 

Now and CIRACast performing the best out through 2 h and WRF-Solar-Now and MAD-WRF 341 

through 3-6-h lead times. For partly cloudy and cloudy conditions, the performance of the 342 

components is much more variable, with NESI and MADCast providing the best forecasts during 343 

partly cloudy conditions and StatCast-Cubist and MAD-WRF giving the better forecasts during 344 

cloudy conditions. One can see oscillations in the blended models such as MAD-WRF and NESI 345 

as they switch weighting from one model to another. 346 
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Nowcast Case Studies 347 

 348 

To better understand the performance of the various Nowcast components in specific situations, 349 

a series of inter-comparison case studies was undertaken by Lee et al. (2017). Fifteen-minute 350 

average GHI predictions were compared against observations from seven pyranometers near 351 

Sacramento, California, that are owned and operated by SMUD. The GHI forecasts from several 352 

forecast models — StatCast-Cubist, CIRACast, MADCast, and four versions of WRF-Solar — 353 

were compared over four case days with canonical sky cover regimes (i.e., clear skies, morning 354 

stratocumulus, mix of clouds and sun, and overcast). 355 

Statistical forecasting with StatCast-Cubist provided the best forecast under clear skies, due to the 356 

attenuation from typical aerosol loading already accounted for in its training dataset and the 357 

observations. StatCast typically had some of the lowest errors on all case days for the first 45-60 358 

min. GHI forecast errors for longer lead times increased when clouds were present, however. 359 

Especially in cases when rapidly changing cloud cover led to reversing trends in GHI, this result 360 

is unsurprising. 361 

The satellite-based forecasting methods CIRACast and MADCast also generally performed well 362 

at short lead times. Unsurprisingly, these methods struggled on days with rapid formation, growth, 363 

and decay of clouds after forecast initialization. Cloud fields predicted by MADCast are generally 364 

smoother than those from CIRACast, but the GHI variability is often grossly underestimated by 365 

MADCast. 366 

NWP with WRF-Solar performed comparatively accurately for GHI predictions for all four cases. 367 

The best accuracy resulted when representing the aerosol direct effect using a high-resolution 368 

aerosol dataset and when representing the radiative effects of unresolved shallow cumulus clouds 369 

using the Deng et al. (2014) mass-flux scheme. Improving the treatment of aerosols made a 370 

noticeable difference in clear sky conditions, while the shallow cumulus scheme substantially 371 

reduced GHI forecast errors during periods of extensive cloud cover. 372 

Assessment of Probabilistic Power Forecasts 373 

 374 
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When the output of the power conversion module is compared to measured power for five solar 375 

farms, mean absolute errors normalized to percentage of capacity (MAPE) range from 1.3 to 4.4% 376 

with a median value of 2.1%. as discussed in more detail in Haupt et al. (2016). 377 

 378 

The AnEn showed promising results for providing an ensemble mean forecast and uncertainty 379 

quantification for GHI forecasts. Toward the end of the project, the technique was also applied to 380 

power forecasts for SMUD locations. The RMSE of the AnEn mean and Sun4Cast versus power 381 

measurements were assessed for the 0-72 h forecast. Overall, AnEn provides substantial 382 

improvement to the deterministic forecast as measured by root mean squared error (RMSE), 383 

mean absolute error (MAE), and bias error. Improvements in power forecasts are similar to those 384 

reported for GHI forecasts with a median improvement of 17% in RMSE. 385 

 386 

Probabilistic forecasts were also computed for 10, 25, 50, 75, and 90% exceedance of power 387 

capacity. A marked improvement was obvious in terms of Brier Skill Score (Wilks 2011) for 388 

probabilities of an exceedance of 50% of capacity (Haupt et al. 2016). The computed Brier Skill 389 

Score across all lead times was 0.55 (Figure 5-23 of Haupt et al. 2016).  390 

 391 

Economic valuation 392 

 393 

Production cost modeling (PCM) approaches were used to assess the value of energy forecasts. 394 

PCM is used by utilities on an operational basis to determine the optimal system configuration 395 

(e.g., lowest cost) for the day-ahead time frame, given expected demand (load) while taking into 396 

consideration all other relevant factors (e.g., fuel costs, maintenance on facilities, transmission 397 

constraints, etc.). Martinez-Anido et al. (2016) used a PCM to derive value estimates for day-398 

ahead solar power forecasting improvements for the New England Independent System Operator 399 

(ISO-NE) with varying solar power penetrations (4.5%, 9.0%, 13.5%, and 18.0%) and solar 400 

power forecasting improvements (25%, 50%, 75%, and 100%). Their analysis indicates that 401 

improved solar power forecasting reduces operational electricity generation costs. The benefits 402 

increase further with higher penetration levels and with larger forecast improvements. 403 

 404 
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An economic evaluation based on PCM for the Public Service Company of Colorado showed 405 

that a 50% improvement (see Figure 5-5 of Haupt et al. 2016, which indicates a 45-48% 406 

improvement over a year of the project) in day-ahead forecast accuracy will save their customers 407 

$819,200 in 2024 with the projected solar deployment for that year. Using econometrics, NCAR 408 

scaled this savings to a national level and showed that an annual expected savings for this 50% 409 

forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased 410 

solar deployment (Lazo et al. 2017b). This amounts to $455M in potential discounted savings 411 

over the 26-year period of analysis (Haupt et al. 2016). 412 

 413 

Discussion  414 

The DOE-funded Public-Private-Academic Partnership to Advance Solar Power Forecasting 415 

project functioned as a collaborative team, with each participant contributing to portions of the 416 

Sun4Cast® Solar Power Forecasting System. The project began by seeking to understand 417 

industry needs in order to configure a system that meets those needs, based on characterizing the 418 

problems using a value chain approach. The end result is the Sun4Cast solar power forecasting 419 

system that has been thoroughly evaluated. 420 

Recommendations for best practice forecasting 421 

A major goal of this project was to draw conclusions about the performance of each component 422 

system and make recommendations for best practices in configuring solar power forecasting 423 

systems. Some specific recommendations include the following: 424 

 Blend component models or systems together. The forecast from blended 425 

models/systems is invariably significantly better than those produced by a single model 426 

or approach, when evaluating the full timeframe. 427 

 Use an NWP model tuned for the purpose. Using WRF-Solar® significantly improved 428 

forecasting. Including high-resolution, high quality aerosol datasets and a shallow 429 

cumulus scheme have proven especially beneficial. 430 

 Include multiple NWP models. Blending multiple NWP models improves the forecast 431 

for time scales from 3 h through the day-ahead forecast and beyond. 432 
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 Employ statistical learning methods trained on targeted in situ observations for 433 

short-range forecasting. StatCast trained using local pyranometer data was better than 434 

smart persistence, even at short time scales (15 min to 3 h), and TSICast, which uses 435 

multiple sky imagers as well as statistical learning techniques, improved upon persistence 436 

for time ranges less than 15 min. 437 

 Use satellite-based cloud advection, being mindful of its challenges. For mountainous 438 

or coastal regions, it is necessary to include some model physics to account for stationary 439 

clouds as well as for cloud formation and dissipation. It is important to include the 440 

improvements related to correcting for shadowing and parallax as accomplished by 441 

CIRACast.  442 

 Combine NWP with satellite data via assimilation for nowcasting. MAD-WRF runs 443 

quickly and produced the best forecast on the 1-6-h time scale. 444 

 Include analog ensembles. The AnEn both improves upon the deterministic blended 445 

forecast and produces a probabilistic prediction that is well calibrated. 446 

 Develop an empirical power conversion method. Such methods are amenable to 447 

training using site-specific information, even when missing metadata. Artificial 448 

intelligence techniques are capable of predicting directly from an observation to a target 449 

value if historic training data are available. 450 

 Perform verification with an enhanced series of metrics. Carefully chosen metrics 451 

allow for meaningful evaluation and tuning of both individual models and the entire 452 

system. 453 

 Consider economic metrics of value to the user. Expand the use of PCM and reserves 454 

analysis to quantify and demonstrate the economic benefits of improvements to solar 455 

power forecasting. 456 

 457 

Lessons learned 458 

Typical of any real-world applied project, the team encountered several challenges. Chief among 459 

these issues was solar farm data availability and quality, which is a critical issue for any 460 

forecasting system. Addressing these issues would benefit researchers, practitioners, and the end 461 

users, but would require some coordination or adoption of standards across the community. 462 
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Additionally, historical data were often unavailable. Statistical learning and artificial intelligence 463 

methods require historical data for training the system, so where data do not exist, those 464 

techniques cannot be employed. Finally, because the atmosphere is a chaotic dynamical system, 465 

there are limits to predictability that should be recognized in designing and assessing any 466 

forecast system. Although weather and climate forecasting is constantly improving, the 467 

sensitivity to initial conditions provides a theoretical limit on how well we can forecast for a 468 

particular timeframe. 469 

Leveraging the Design Process 470 

The team demonstrated and evaluated a working Sun4Cast solar power prediction system that 471 

includes the multiple components described herein. The individual components and the overall 472 

Sun4Cast system were validated using the metrics developed toward the beginning of the project. 473 

The team met or exceeded most of the target values specified by the project sponsor, the DOE 474 

SunShot Initiative. Data streams from various model systems were made available to the 475 

forecasting partners, forecasts were regularly provided to the utility and ISO partners, and 476 

feedback from the partners was used to iteratively improve the forecasting models.  477 

The team conducted transformative research in statistical forecasting, advective/dynamic short-478 

range forecasting, nowcasting with real-time data assimilation, satellite techniques and data 479 

assimilation for solar forecasting, NWP with the WRF-Solar model (including cloud physics 480 

parameterization, convective parameterization, clear-sky aerosol estimation, and radiative 481 

transfer modeling), irradiance-to-power conversion, and uncertainty quantification. 482 

The team approach of infusing social science from the beginning to facilitate team building was 483 

widely successful. We believe that this approach of starting with the end in mind, listening to the 484 

end user, group mental modeling exercises, and continued communication throughout a project 485 

can be leveraged for other large projects with many interacting parts. 486 

Continuity and Next Steps 487 

 488 

The team members have all grown in their research capabilities in solar energy and the 489 

collaborative research is expected to continue. Further improvements can be made and new 490 
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applications of solar power as well as forecasting its output are continually appearing. A direct 491 

point of continuity is continued collaboration among the partners.  492 

 493 

The details of the models are documented in Haupt et al. (2016) and individual journal papers 494 

describing each model, many of which are referenced herein. Many of the component models are 495 

OpenSource and available from NCAR (see 496 

https://wiki.ucar.edu/display/Sun4Cast/Sun4Cast+Home).  497 

 498 

Our utility and ISO partners provided feedback regarding their vision of the future of solar power 499 

forecasting. One partner commented, “…the industry need is still there and it will only get larger 500 

as more distributed energy is connected to the grid.” Another said that forecasts will be from 501 

“centralized regional transmission authority (RTO)/ISO/balancing authority (BA)-generated 502 

forecasts that will have multiple uses and at varying granularities.” As a community we must 503 

strive to continually provide improved forecasts in a form that will be appealing and beneficial to 504 

end users. 505 

 506 

As the penetration of solar power continues to grow, solar power forecasting with systems such 507 

as Sun4Cast will provide key technologies that will make the economics more feasible, thus 508 

empowering greater solar power deployment. Such enhanced deployment has the potential to 509 

improve air quality, mitigate climate change, improve energy security, and provide enhanced 510 

employment opportunities throughout the renewable energy sector. 511 

 512 
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 528 

Sidebar 529 

 530 

Conceptual Modeling  531 

With the background provided by the stakeholders, time was devoted during the first-year project 532 

workshop to developing a shared conceptual model of the weather-solar-power value chain. The 533 

group broke into five pre-assigned teams that mixed forecast users, providers, and researchers to 534 

develop mental models of the forecast value chain. The objectives of this exercise were team 535 

building, facilitating discussion, enhancing understanding across all participants in the project, 536 

building a qualitative model of the weather-solar value chain, and explaining how research to 537 

improve forecasts will create value (Lazo 2017a).  538 

All team members were given general guidance to spend time “drawing” and discussing their 539 

own value chain, considering issues such as: What values, decisions, or outcomes do you think 540 

are important to end users and decision-makers? How does weather impact those decisions? How 541 

does weather information relate to those decisions? How would changes or improvements in 542 

weather forecasts change those outcomes? Who are the decision-makers? What are their needs, 543 

resources, and constraints? How do different “agents” in the value chain add value to 544 

information? What is the relevant forecast information? What if this project improved the 545 

relevant forecast by x%? What does an x% improvement mean? How does an x% improvement 546 

affect outcomes for weather forecast vendors, utilities, ISOs, and regional transmission operators 547 

(RTOs)? This approach was quite successful for team building and enabled the group to come to 548 

a joint visualization of the project goals. 549 

 550 

The team then delved deeper into the elements of the forecasting systems and determined how to 551 

fit them into one cohesive whole. Figure 1 illustrates a more complete vision that fits the value 552 

chain to the elements of the project. Break-out discussion groups were configured to bring 553 

together specific teams on the project. The project progressed with five primary teams that 554 

discussed their research and advances at least monthly. These teams were 1) Metrics, 2) 555 

Nowcasting, 3) Numerical Weather Prediction, 4) Engineering, and 5) Management (including 556 

all team leads). This proved to be an effective way to manage the flow of the project. 557 

 558 
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 713 

Table 1. Consensus of metrics to be exercised in evaluating solar power forecasting systems. 714 

 Model-Reference Comparison Utility Planning/Operations Support 

 Statistical Information Statistical Economic/Value 

Base BC1: Distribution of Forecast Errors 
BC2: Mean Absolute Error 
BC3: RMSE 
BC4: Standard Deviation/Variance 
BC5: Pearson’s Correlation 
Coefficient 
BC6: Categorial Statistics for Event 
BC7: Frequency of Superior 
Performance 

BP1: Mean Bias Error 
BP2: Skewness 
BP3: Kurtosis 
BP4: 99th Percentile 

BV1: Operating 
Reserves Analysis 
BV2: Electricity 
Production Cost 
Analysis 

Enhanced EC1: Kolmogorov-Smirnov Test 
Integral 
EC2: OVER Metric 
EC3: Renyi Entropy 
EC4: Paired Test for Mean and 
Variance 
EC5: Performance Diagram for 
Continuous Statistics 

EP1: Probability 
Interval Forecast 
Evaluation 
EP2: Brier Score 
EP3: Receiver Operator 
Characteristic Curve 
and Area 
EP4: Reliability 
Diagram 

EV1: Electricity Load 
Payments Analysis 
EV2: Solar Generation 
Curtailment 
EV3: Power Trading 
Impact 
P1: Load Forecast 
Improvement 
P2: Storage 
Optimization 

 715 

  716 
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Figure Headings: 717 

 718 

 719 
 720 

 721 

Figure 1. Value chain implementing a weather decision support system for solar power. At the 

bottom are the components of the NCAR team’s system that build toward providing an economic 

impact of this system. 

 

Figure 2. Sun4Cast forecasting system predicts across scales. The fuzzy ovals roughly indicate the 

time scales of each component’s forecast. Each component is discussed in the text. 

 

Figure 3: Diagram showing the WRF-Solar augmentations that now include specific interactions 

between the radiation, clouds, and aerosols 

 

Figure 4. MAE in W m-2 for Day-Ahead forecasts from DICast components and Sun4Cast system 

at all partner locations and all sky conditions. 

 

Figure 5. MAE in W m-2 for all Nowcast components aggregated over all partners and all sky 

conditions (upper left), clear (upper right), partly cloudy (lower left), and cloudy (lower right) sky 

conditions. 
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Figure 1. Value chain implementing a weather decision support system for solar power. At the 723 

bottom are the components of the NCAR team’s system that build toward providing an economic 724 

impact of this system. 725 
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 727 
Figure 2. Sun4Cast forecasting system predicts across scales. The fuzzy ovals roughly indicate 728 

the time scales of each component’s forecast. Each component is discussed in the text. 729 

 730 
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 731 
Figure 3: Diagram showing the WRF-Solar augmentations that now include specific interactions 732 

between the radiation, clouds, and aerosols.  733 
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 735 

 736 
Figure 4. MAE in W m-2 for day-ahead forecasts from DICast components and Sun4Cast system 737 

at all partner locations and all sky conditions. Pairwise differences between NAM & DICast 738 
(gray) and NAM and WRF-Solar (blue) are shown with bootstrapped confidence intervals using 739 

95% significance. Places where the interval does not encompass 0 are statistically significant.   740 
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743 

 744 
Figure 5. MAE in W m-2 for Nowcast components aggregated over all partners and all sky 745 

conditions (upper left), clear (upper right), partly cloudy (lower left), and cloudy (lower right) 746 

sky conditions. The scores are aggregated over all issue times. 747 

 748 
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Response to Reviewer’s Comments 

 

The authors thank the reviewers for their careful reading of our manuscript and thoughtful 

comments. We believe that responding to those comments has strengthened the paper. Each 

reviewer’s comments (in blue) and our responses are detailed below. 

 

Reviewer 1:  We thank the reviewer for the complimentary comments. Some specific responses 

include: 

 

Page 9 (line 202) If it's easy to include which two aerosol species are allowed, please consider 

doing so. I found myself wondering about this, which is a minor distraction. 

 

We have clarified (Page 9, lines 201-203) that “…only two general aerosol species are allowed, 

specifically the nonhygroscopic ice-nucleating aerosols which are dust particles and the 

hygroscopic aerosols including sea-salts, organic matter, and sulfates.”. 

 

Page 13 (lines 288-289) If it is easy to add a brief explanation as to how use of a Cubist 

regression tree model implicitly accounts for the specifics of solar panel installation, mitigating 

meta-date problems please do so. I found myself wondering about this, which is a minor 

distraction. 

 

We have added a brief explanation that Cubist trains “the power output directly to the observed 

input solar irradiance,” which resolves problems with inaccurate metadata (lines 283-285). 

 

Page 13 (lines 290-295) If it is easy to add brief explanation about the analog ensemble 

technique, please do so. Something like the following might suffice: The AnEn method uses 

historical pairs of NWP forecasts and observations of solar power production. The method 

matches a current forecast to an historical forecast and its associated power production. 

If it's easy, please add a description of how the AnEn technique quantifies the uncertainty in the 

current forecast. 

 

We have added a brief explanation of the AnEn as requested (lines 298-303): “The last step in 

the forecast process applies the analog ensemble technique (AnEn; Delle Monache et al. 2011, 

2013; Alessandrini et al. 2015). The AnEn searches the database for past forecasts most similar 

to the current forecast. It then forms a probability density function (pdf) of the observations that 

correspond to those historical forecasts. The mean of this pdf becomes the improved forecast and 

its spread quantifies the uncertainty.” 

Response to Reviewers Click here to download Response to Reviewers
Response2Reviewers_Sun4Cast_BAMS_Final.docx

http://www.editorialmanager.com/bams/download.aspx?id=72020&guid=fe59998f-ec7f-42b9-993f-510dad47dcbb&scheme=1
http://www.editorialmanager.com/bams/download.aspx?id=72020&guid=fe59998f-ec7f-42b9-993f-510dad47dcbb&scheme=1
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Topographical Errors and Style/Grammar Suggestions: These errors have all been corrected. 

Thank you for finding them. 

 

 

Reviewer 2:  Thank you for the recommendation of acceptance. The minor errors that you 

mention have been corrected. 

 

 

Reviewer 3: 

 

It appears that although Sun4Cast has integrated a number of forecasting technologies and 

blended a number of forecast systems, the output from DIcast and NowCast are still point 

forecasts. Firstly I am wondering how such kind of point forecast is obtained. The authors keep 

using the word "blended" in various situations without any clarification. Similarly "a consensus 

forecasting approach" is mentioned (Line151-153), it is again unclear how multiple input 

forecasts are integrated.  

 

The reviewer is correct that both DICast and NESI provide point forecasts. For the NESI models, 

each is configured specifically for a specific site. For the NWP models that go into DICast, the 

model grid is interpolated to a point (the site of the solar farm or observation point) than 

corrected with information from the observations. The blending is basically weighting the 

average based on past performance of each input model. This is now described in more detail in 

the revised manuscript (p. 8, lines 150-153): “Both NESI and DICast apply a consensus forecasting 

approach, meaning that they blend and optimize multiple models to provide a better forecast than any of 

the models would produce alone. ” 
 

We have also clarified the meaning of “a consensus forecasting approach,” which we take to 

mean as a blending and optimization using multiple models to provide a better forecast than any 

of the single models alone would produce (p. 8, lines 152-153) 

 

Secondly the authors did not provide any uncertainties quantification that attaches to such point 

forecasts. Have the authors considered providing predictive forecast distributions? 

 

Yes, the forecasts do quantify the uncertainty using the Analog Ensemble approach, as described 

on p. 13, lines 298-306. The full project report (Haupt et al. 2016) provides examples of the 

probabilistic forecasts, but those were not explicitly included here to conserve space. 

 

Line 290-295, analog ensemble technique is applied to provide "probabilistic information to 

quantify uncertainty of the forecast", it appears to me that the AnEn is applied based upon point 

solar forecasts to provide ensemble power forecasts, the claims that this project "effectively 

quantified the uncertainty in the solar forecasts…" and Line 364-365 "uncertainty quantification 

for GHI forecasts." are incorrect. 

 

The Analog Ensemble technique does quantify the uncertainty in the power produced. A few 

more sentences have been added to the manuscript to clarify how it does this (p. 13, lines 299-

304). We also now specify that the uncertainty is in the solar power forecasts (line 305). 
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ii)     Line 169-171, it is noted from former intercomparison that "ECMWF global model 

significantly outperforms the GFS-driven WRF model…". A number augmentations are listed 

and discussed in Page 9-10. I can't help asking after conducting all these augmentations, 

quantitatively how much improvement is made? Does the upgraded WRF model now outperform 

or become comparable to ECMWF model? 

 

The ECMWF model is discussed in terms of what prior authors have found using a standard 

version of WRF. NCAR did not purchase ECMWF forecasts for this project, so no specific 

comparisons of WRF-Solar to it were possible. Here, our reference forecast was the U.S. North 

American Model (NAM) and we compare both WRF-Solar and DICast to the NAM (see Figure 

4). Both WRF-Solar and DICast outperform the NAM forecast. 

 

The authors have explained why those augmentations are made. Even though the improvement is 

expected, it is not necessarily the case that making all the augmentations together will improve 

the forecast. Even it does, some of the augmentations might be irrelevant to the overall 

improvement. It would be better if the authors can quantify the contribution to the overall 

improvement for each augmentation. 

 

Detailed comparisons of each of those augmentations are beyond the scope of this current 

overview paper. Those comparisons appear in the prior publications that described these 

augmentations more specifically and detailed the verification process to assure that the 

augmentations each provided a positive benefit (Ruiz-Arias et al. 2014; Jimenez et al. 2016a, b; 

Xie et al. 2016; Haupt et al. 2016; Lee et al. 2017). 

 

iii)    Line 403-404 the authors claim the Sun4Cast system "has been thoroughly evaluated". Line 

435-437, "carefully chosen metrics allow …". 

I agree carefully chosen metrics is important, however, it is unclear to me it is done so in this 

project. There are a large number metrics listed in Table 1. Why the authors prefer using MAE to 

present the evaluation results in Figure 4 and 5? And why switch to RMSE when evaluate power 

forecast Line 366-370 

The evaluations presented in Figure 4 and 5 are based on finite forecast samples, some sort of 

uncertainties bars are required to demonstrate whether the differences in MAE are significant. 

 

The comparisons in this paper are a small sample of the ones accomplished and presented in the 

307-page project report referenced in the manuscript (Haupt et al. 2016). It is beyond the scope 

of this overview paper to go into all of the details of the verifications of each of the input models. 

Our goal here is merely to provide a sampling of results and summarize the primary findings. 

However, we have updated Figure 4 to include pairwise differences between one operational 

model (NAM) and the DICast system and WRF-Solar component.  The manuscript now 

explicitly states “Statistical analysis through pairwise differences and bootstrapped confidence 

intervals indicates that these results are statistically significant at the 95% level for all issue times 

when NAM is compared to DICast and all but the first lead time when NAM is compared to 

WRF-Solar . Figure 5-13 in Haupt et al. (2016), also indicates statistically significant results at 

all lead times.” (p. 14, lines 328-332. For more details, the reviewer and readers are referred to 

the report, available on-line at http://opensky.ucar.edu/islandora/object/technotes:539. There the 

http://opensky.ucar.edu/islandora/object/technotes:539


4 
 

statistical significance of the results are also provided, which is summarized quite briefly on p. 

14 of the manuscript. 

 

The results in Figure 5 are odd as the performances of some models fluctuate when lead time 

increases. Normally one would expect the forecast performance degrades as lead time increases. 

Please explain why it is not the case here. 

 

In Figure 5, the forecast errors do fluctuate according to lead time, but most of them tend to 

increase with lead time, as expected. The ones that perhaps fluctuate the most are for cloudy 

conditions. For such conditions, forecasts can be quite difficult, and averaged over multiple sites 

and over a large time, it is not unexpected that fluctuations would occur. Also note that the 

models that tend to reduce errors with lead time are the blended models like MAD-WRF and the 

NESI nowcast blending. These forecasts switch from the performance of one model to another, 

so a discontinuity is expected. This is now pointed out in the revised manuscript (p. 14, lines 

345-346). Also, there could be a small tendency towards smaller errors at the end of the forecast 

period, which is likely associated with the diurnal cycle. 

 

For Figure 4, note that the x-axis is not lead time, but rather issue time. In terms of issue time, 

morning forecasts may be more difficult due to the unavailability of visible satellite data in the 

morning to assimilate into the models. In addition, combining early-morning forecasts with 

midday forecasts can lead to some odd aggregate behavior in the average raw MAE as a function 

of lead time. 

 

iv)     In "Economic Valuation" section, the authors cited various research work, suggest solar 

power forecasting improvement would reduce operational electricity generation costs. Line 390-

395, "50% improvement…will save their customers $819,200 in 2024…an annual expected 

savings for this 50% forecast error reduction ranges from $11 in 2015 to …" 

How is 50% improvement quantified? Using RMSE? Note these expected savings for "50% 

forecast error reduction" would depend on the forecast error of the former forecast system, and 

the relationship between forecast improvement and expected saving might not be linear. 

The quantification (or at lease estimation) of the expected savings due to the use of Sun4Cast 

system would help demonstrate the potential economic gain from this project. 

 

The 50% is in terms of MAE and is derived from Figure 5-5 of Haupt et al. (2016) and stated in 

the text (” The improvement in performance at Xcel between April 2015 and March 2016 

represents a 45-48% improvement within the timeframe of the project.” – p. 206 of that 

document, p. 17). It compares our Sun4Cast system as originally set up (expected to compare 

well with typical, pre-project predictions) and after having spent some time improving the 

system over the course of the project. This is now stated more clearly in the manuscript on p. 17, 

lines 406-407. We agree that there is a non-linear relationship between forecast improvement and 

cost savings. We also agree that estimating expected savings is helpful to demonstrate the 

economic gain from the project. That is the reason that we present this information in the paper, 

and in more detail in the above-referenced report, as well as in a forthcoming manuscript. 
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Minors 

 

1)      Line 40, "provides recommendations for best-practice solar forecasting" I do find most 

recommendations are useful, but I would not use the word "best" 

 

Merriam-Webster defines “best practice” to mean “a procedure that has been shown by 

research and experience to produce optimal results and that is established or proposed 

as a standard suitable for widespread adoption.” https://www.merriam-

webster.com/dictionary/best%20practice. Because we accomplished extensive verification on 

multiple forecasting methods, we believe that we are in a position to synthesize this information 

into a series of “best practices” recommendations, which are provided as part of this paper. We 

now add quotation marks around the first use of the term “best practices” on p. 4, line 40. 

 

2)      Line 76 "accurate solar forecasts", is the best available solar forecasts accurate? 

 

Level of accuracy is a judgement call, of course. Here we use the word “accurate” to distinguish 

from the first very cursory attempts at solar power forecasting at the beginning of grid 

integration over a decade ago. Because the paper is about improving the quality of solar power 

forecasts, we believe that the qualifier is appropriate in this context. 

 

3)      Line 92, how to qualify "excellent aerosol prediction"? I would phrase this alternatively, 

for example, the need for the improvement of aerosol prediction… 

 

This passage refers to the work of Schroedter-Homscheidt et al. (2013) in a prior BAMS article. 

That paper pointed out the importance of having very high quality forecasts of aerosols as a 

necessary condition to correctly forecast Direct Normal Irradiance (DNI) for concentrated solar 

applications. However, we have taken your point and made the suggested change. 

 

4)      Line 116, "A second set of stakeholders", what is the first set? The end users? 

 

As stated in the paragraph on p. 6, bottom, yes, the first set of stakeholders does include the end 

users at the electric utilities and system operators.  

 

5)      Line 173, "forecast models are not optimal", I don't believe an optimal model exists, even it 

does, I don't think ECMWF model is optimal either. 

 

We do not mean to imply that ECMWF is optimal, but rather to distinguish it as perhaps superior 

to the GFS-based models for solar irradiance prediction. To that end, we have changed the 

wording on p. 8, line 173 to “do not perform as well.” 

 

6)       Line 239, "15-50%" of what? 

 

As stated in that line, as compared to smart persistence. We have added now that it is compared 

in terms of  MAE. 

 

7)      Line 261-262, please clarify what does it mean by "effective", smaller MAE? 

https://www.merriam-webster.com/dictionary/best%20practice
https://www.merriam-webster.com/dictionary/best%20practice
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We have added an example here (Page 12, lines 263-266) to clarify our meaning: “For instance, 

the satellite-based method, CIRACast, provides the best initial state during partly cloudy 

conditions, although that may not carry through to clear or fully cloudy conditions. It does, 

however, provide value for forecasting short-range ramps due to changing cloud cover (Figure 5-

8 of Haupt et al. 2016).” 

 

8)      Line 271: please clarify "smartly blend" 

 

We have added a phrase here (Page 12, lines 270-271) to clarify our meaning: “It is also critical 

to engineer a system that smoothly handles data input and output and effectively blends the 

results of each of the components.”. 

 

9)      Line 374-375, "computed Brier skill score…was 0.55", why "0.55" suggests improvement? 

 

This is actually a Brier Skill Score, which compares forecasts to a baseline and normalizes. Thus, 

a Brier Skill Score of 0.55 can be interpreted as a 55% improvement over the baseline forecast, 

which in this case compares the 50% probability interval of the AnEn to the Sun4Cast prediction. 

 

10)     Line 409-411, according Figure 4. and 5., "blended models/systems invariably 

significantly better than… single model" is not true. 

 

The reviewer makes a good point. We should qualify this statement as true on average, over all 

lead times. This has been done. 

 

11)     Line 429-430, Please justify AnEn produces "a probabilistic prediction that is well 

calibrated" 

 

This statement is justified based on our assessments of AnEn above (p. 16, lines 387-390). We 

have added a few more statements to enlarge the discussion of assessment beyond the 50% 

probability of exceedance provided previously: “Improvements in power forecasts are similar to 

those reported for GHI forecasts with a median improvement of 17% in RMSE. 

 

Probabilistic forecasts were also computed for 10, 25, 50, 75, and 90% exceedance of power 

capacity. A marked improvement was obvious in terms of Brier Skill Score (Wilks 2011) for 

probabilities of an exceedance of 50% of capacity (Haupt et al. 2016). The computed Brier Skill 

Score across all lead times was 0.55 (Figure 5-23 of Haupt et al. 2016).” 

 

12)     Line 449-453, Chaos limits model predictability, so does the model error. Has such 

"theoretical limit on ..timeframe" been estimated? 

"Forecasts from Sun4Cast are provided every 15 min, extend to 72 h, and can be provided as far 

out as 168 h. "(Line 160)? Are "72h", "168h" related to such "theoretical limit"? 

 

The team actually had hoped to quantify those limits of predictability, but DOE did not wish 

their funds to be spent on that endeavor, so it was never completed. No, there is no intentional 
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relationship between the forecast lengths and the limits of predictability. Those forecast lengths 

were instead set according to the needs of the end users. 

 

 

Reviewer 4:  Thank you for complimentary comments. The minor errors that you noted have 

been corrected. 
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